3040 independent reflections

 $R_{\rm int} = 0.039$

reflections intensity decay: 1%

2206 reflections with $I > 2\sigma(I)$

3 standard reflections every 200

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-Methoxy-1,3,4-thiadiazol-2(3H)-one

Wei-Yi Zhang,^a Jie Liu^b* and Yan-Ju Liu^c

^aDepartment of Obstetrics and Gynecology, The First Affiliated Hospital of Henan University of Traditional Chinese, Medicine, Zhengzhou 450008, People's Republic of China, ^bDepartment of Urology, Henan Provincial People's Hospital, Zhengzhou 450003, People's Republic of China, and CPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China Correspondence e-mail: liuyanju886@163.com

Received 3 January 2012; accepted 15 January 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean $\sigma(N-C) = 0.008$ Å; R factor = 0.056; wR factor = 0.133; data-to-parameter ratio = 14.0.

The three molecules in the asymmetric unit of the title compound, $C_3H_4N_2O_2S$, are connected via $N-H \cdots O$ hydrogen bonds, forming layers normal to [001]. The rings of the molecules are approximately planar, with r.m.s. deviations of 0.0051 (1), 0.0044 (1) and 0.0111 (1) Å.

Related literature

For background to the applications of the title compound, see: Collier (2004). For the synthesis, see: Zhu et al. (2011). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

 $C_3H_4N_2O_2S$ $M_r = 132.16$ Hexagonal, P61 a = 11.9240 (17) Åc = 20.111 (4) Å V = 2476.3 (7) Å³

Z = 18Mo $K\alpha$ radiation $\mu = 0.49 \text{ mm}^-$ T = 293 K $0.30 \times 0.20 \times 0.20 \mbox{ mm}$

Data collection

Enraf–Nonius CAD-4
diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.867, T_{\max} = 0.909$
3492 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.056$	H-atom parameters constrained
$wR(F^2) = 0.133$	$\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$
S = 1.04	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$
3040 reflections	Absolute structure: Flack (1983),
217 parameters	1468 Friedel pairs
1 restraint	Flack parameter: -0.05 (14)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\frac{N1 - H1A \cdots O3^{i}}{N3 - H3D \cdots O5}$	0.86 0.86	1.97 1.96	2.796 (7) 2.788 (6)	160 161
$N5-H5A\cdotsO1^{ii}$	0.86	1.99	2.813 (8)	161

Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z.

Data collection: CAD-4 Software (Enraf-Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Doctoral Research Fund of Henan Chinese Medicine (BSJJ2009-42). The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2331).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Collier, S. J. (2004). Sci. Synth. 13, 349-414.
- Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhu, H. J., Xi, B. B., Feng, M. L., Wang, K., Li, Y. F., Shi, L. & Chen, C. (2011). CN Patent No. 102212076A.

supplementary materials

Acta Cryst. (2012). E68, o475 [doi:10.1107/S160053681200178X]

5-Methoxy-1,3,4-thiadiazol-2(3H)-one

W.-Y. Zhang, J. Liu and Y.-J. Liu

Comment

The tittle compound, 2-methoxythiazol-5(4*H*)-one is an important intermediate, which can be utilized to synthesize herbicide fluthiacet-ethyl (Collier, 2004). We report here the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. In the crystal structure, the asymmetric unit contains three molecules of 2-methoxythiazol-5(4H)-one and these molecules were connected together via N-H…O intermolecular hydrogen bonds forming stacking layers along c-axis (Fig. 2.). In the crystal structure, the rings are planar, with r.m.s. deviation of 0.06 (1) Å. The bond lengths and angles are within normal ranges (Allen *et al.*, 1987).

Experimental

The title compound, (I) was prepared by a method reported in literature (Zhu *et al.*, 2011). The crystals were obtained by dissolving (I) (0.2 g) in methanol (50 ml) and evaporating the solvent slowly at room temperature for about 10 d.

Refinement

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with 0.86 Å for N—H, 0.96 Å for methyl H, respectively. The $U_{iso}(H) = xU_{eq}(C)$, where x = 1.2 for N—H, and x = 1.5 for methyl H.

Figures

Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Intermolecular H-bonds are shown with dashed lines.

Fig. 2. A packing diagram of (I) showing the stacked layers along c-axis.

5-Methoxy-1,3,4-thiadiazol-2(3H)-one

Crystal data

$C_3H_4N_2O_2S$	$D_{\rm x} = 1.595 {\rm Mg m}^{-3}$
$M_r = 132.16$	Mo K α radiation, $\lambda = 0.71073$ Å
Hexagonal, P61	Cell parameters from 25 reflections
Hall symbol: P 61	$\theta = 9-13^{\circ}$
a = 11.9240 (17) Å	$\mu = 0.49 \text{ mm}^{-1}$
c = 20.111 (4) Å	T = 293 K
$V = 2476.3 (7) \text{ Å}^3$	Block, colourless
Z = 18	$0.30 \times 0.20 \times 0.20 \text{ mm}$
F(000) = 1224	

Data collection

Radiation source: fine-focus sealed tube $R_{int} = 0.039$ graphite $\theta_{max} = 25.4^{\circ}, \theta_{min} = 2.0^{\circ}$ $\omega/2\theta$ scans $h = 0 \rightarrow 12$ Absorption correction: w scan
graphite $\theta_{max} = 25.4^\circ, \theta_{min} = 2.0^\circ$ $\omega/2\theta$ scans $h = 0 \rightarrow 12$ Absorption correction: ω scan
$\omega/2\theta$ scans $h = 0 \rightarrow 12$
Absorption correction: w scan
(North <i>et al.</i> , 1968) $k = 0 \rightarrow 12$
$T_{\min} = 0.867, T_{\max} = 0.909$ $l = -24 \rightarrow 24$
3492 measured reflections 3 standard reflections every 200 reflections
3040 independent reflections intensity decay: 1%

Refinement

ation. Interred from heighbourning
rs constrained
$(0.0696P)^2 + 0.1426P]$ $2F_c^2)/3$
-3
A ⁻³
tion: SHELXL97 (Sheldrick, 2008)
eient: 0.0009 (2)
e: Flack (1983), 1468 Friedel pairs

Secondary atom site location: difference Fourier map Flack parameter: -0.05 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.82079 (12)	0.67453 (12)	0.52166 (9)	0.0559 (4)
N1	0.8459 (4)	0.4789 (4)	0.5285 (3)	0.0500 (12)
H1A	0.8783	0.4288	0.5317	0.060*
C1	0.9238 (5)	0.6063 (5)	0.5255 (3)	0.0473 (14)
01	1.0407 (3)	0.6672 (4)	0.5228 (3)	0.0709 (14)
N2	0.7133 (4)	0.4265 (4)	0.5265 (3)	0.0487 (12)
O2	0.5724 (3)	0.5049 (3)	0.5201 (2)	0.0638 (12)
C2	0.6895 (5)	0.5184 (5)	0.5232 (3)	0.0440 (13)
C3	0.4662 (5)	0.3737 (6)	0.5148 (4)	0.071 (2)
H3A	0.3860	0.3742	0.5130	0.107*
H3B	0.4659	0.3248	0.5528	0.107*
H3C	0.4759	0.3348	0.4751	0.107*
S2	-0.10862 (12)	0.04825 (12)	0.51466 (7)	0.0452 (4)
O3	-0.1023 (4)	0.2749 (4)	0.5220 (3)	0.0646 (12)
O4	0.0620 (3)	-0.0301 (3)	0.5161 (2)	0.0564 (11)
N3	0.0884 (4)	0.2708 (4)	0.5190 (3)	0.0497 (12)
H3D	0.1382	0.3535	0.5191	0.060*
N4	0.1407 (4)	0.1911 (4)	0.5184 (3)	0.0443 (11)
C4	-0.0410 (5)	0.2188 (5)	0.5194 (3)	0.0431 (13)
C5	0.0477 (4)	0.0735 (5)	0.5165 (3)	0.0429 (12)
C6	0.1950 (5)	-0.0021 (6)	0.5226 (4)	0.0588 (16)
H6A	0.1968	-0.0817	0.5216	0.088*
H6B	0.2302	0.0416	0.5640	0.088*
H6C	0.2456	0.0521	0.4864	0.088*
S3	0.52008 (12)	0.74536 (12)	0.53340 (7)	0.0513 (4)
05	0.2932 (4)	0.5245 (3)	0.5299 (3)	0.0760 (14)
O6	0.5965 (3)	0.9929 (3)	0.5329 (2)	0.0622 (12)
N5	0.2976 (4)	0.7178 (4)	0.5261 (3)	0.0519 (12)
H5A	0.2149	0.6839	0.5233	0.062*
N6	0.3771 (4)	0.8501 (4)	0.5268 (3)	0.0500 (11)
C7	0.3507 (5)	0.6438 (5)	0.5296 (3)	0.0486 (14)
C8	0.4939 (4)	0.8748 (5)	0.5309 (3)	0.0447 (13)
C9	0.5707 (6)	1.0982 (5)	0.5339 (5)	0.074 (2)

supplementary materials

H9A	0.6511	1.1787	0.5356	0.111*
H9B	0.5198	1.0907	0.5725	0.111*
Н9С	0.5240	1.0955	0.4945	0.111*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0353 (7)	0.0322 (7)	0.1008 (12)	0.0171 (6)	0.0044 (9)	0.0039 (8)
N1	0.038 (2)	0.035 (2)	0.082 (4)	0.023 (2)	-0.001 (3)	-0.003 (3)
C1	0.034 (3)	0.039 (3)	0.069 (4)	0.019 (3)	0.003 (3)	-0.004 (3)
01	0.033 (2)	0.050 (2)	0.125 (4)	0.0174 (18)	0.004 (3)	-0.004 (3)
N2	0.035 (2)	0.035 (2)	0.076 (4)	0.0171 (19)	0.001 (2)	0.000 (3)
02	0.0308 (18)	0.043 (2)	0.117 (4)	0.0178 (16)	0.004 (2)	-0.003 (3)
C2	0.031 (2)	0.033 (3)	0.066 (4)	0.014 (2)	0.008 (3)	0.007 (3)
C3	0.036 (3)	0.053 (4)	0.115 (7)	0.015 (3)	-0.006 (4)	-0.011 (4)
S2	0.0315 (6)	0.0334 (6)	0.0664 (9)	0.0132 (5)	-0.0002 (6)	-0.0008 (6)
03	0.059 (3)	0.047 (2)	0.101 (3)	0.036 (2)	-0.005 (3)	-0.004 (2)
O4	0.045 (2)	0.0305 (19)	0.096 (3)	0.0208 (16)	-0.003 (2)	-0.001 (2)
N3	0.042 (2)	0.025 (2)	0.079 (4)	0.0145 (18)	-0.006 (3)	0.001 (2)
N4	0.035 (2)	0.029 (2)	0.066 (3)	0.0139 (17)	0.000 (3)	0.004 (2)
C4	0.043 (3)	0.031 (2)	0.057 (4)	0.020 (2)	-0.002 (3)	0.000 (3)
C5	0.038 (3)	0.037 (3)	0.052 (3)	0.017 (2)	0.002 (3)	0.003 (3)
C6	0.044 (3)	0.055 (3)	0.088 (5)	0.032 (3)	0.001 (4)	0.016 (4)
S3	0.0317 (7)	0.0351 (7)	0.0863 (12)	0.0160 (6)	-0.0036 (7)	-0.0017 (7)
05	0.045 (2)	0.029 (2)	0.139 (4)	0.0071 (19)	-0.003 (3)	-0.001 (3)
O6	0.036 (2)	0.0323 (19)	0.110 (4)	0.0112 (17)	0.001 (2)	0.001 (2)
N5	0.029 (2)	0.041 (2)	0.084 (4)	0.016 (2)	0.004 (3)	-0.001 (3)
N6	0.036 (2)	0.034 (2)	0.078 (3)	0.0164 (19)	0.003 (3)	0.001 (2)
C7	0.036 (3)	0.037 (3)	0.067 (4)	0.014 (2)	0.003 (3)	-0.005 (3)
C8	0.033 (3)	0.032 (3)	0.064 (4)	0.012 (2)	0.003 (3)	-0.002 (3)
C9	0.059 (4)	0.027 (3)	0.127 (6)	0.016 (3)	0.009 (4)	0.004 (4)

Geometric parameters (Å, °)

S1—C2	1.733 (5)	N3—N4	1.373 (5)
S1—C1	1.782 (5)	N3—H3D	0.8600
N1—C1	1.328 (6)	N4—C5	1.282 (6)
N1—N2	1.380 (5)	С6—Н6А	0.9600
N1—H1A	0.8600	С6—Н6В	0.9600
C1—O1	1.209 (6)	С6—Н6С	0.9600
N2—C2	1.264 (6)	S3—C8	1.721 (5)
O2—C2	1.324 (6)	S3—C7	1.762 (6)
O2—C3	1.443 (7)	O5—C7	1.232 (6)
С3—НЗА	0.9600	O6—C8	1.326 (6)
С3—Н3В	0.9600	O6—C9	1.434 (7)
С3—Н3С	0.9600	N5—C7	1.321 (6)
S2—C5	1.734 (5)	N5—N6	1.375 (6)
S2—C4	1.777 (5)	N5—H5A	0.8600
O3—C4	1.214 (5)	N6—C8	1.274 (6)

O4—C5	1.328 (5)	С9—Н9А	0.9600
O4—C6	1.454 (6)	С9—Н9В	0.9600
N3—C4	1.345 (6)	С9—Н9С	0.9600
C2—S1—C1	88.1 (2)	N4—C5—O4	125.1 (4)
C1—N1—N2	120.3 (4)	N4—C5—S2	117.2 (4)
C1—N1—H1A	119.9	O4—C5—S2	117.7 (3)
N2—N1—H1A	119.9	O4—C6—H6A	109.5
01—C1—N1	128.8 (5)	O4—C6—H6B	109.5
O1—C1—S1	125.1 (4)	H6A—C6—H6B	109.5
N1—C1—S1	106.1 (4)	O4—C6—H6C	109.5
C2—N2—N1	108.2 (4)	Н6А—С6—Н6С	109.5
C2—O2—C3	115.9 (4)	H6B—C6—H6C	109.5
N2—C2—O2	125.2 (4)	C8—S3—C7	87.5 (2)
N2—C2—S1	117.3 (4)	C8—O6—C9	116.3 (4)
O2—C2—S1	117.5 (4)	C7—N5—N6	118.7 (5)
O2—C3—H3A	109.5	C7—N5—H5A	120.7
O2—C3—H3B	109.5	N6—N5—H5A	120.7
НЗА—СЗ—НЗВ	109.5	C8—N6—N5	108.2 (4)
O2—C3—H3C	109.5	O5—C7—N5	126.5 (5)
НЗА—СЗ—НЗС	109.5	O5—C7—S3	125.4 (4)
НЗВ—СЗ—НЗС	109.5	N5—C7—S3	108.1 (4)
C5—S2—C4	88.1 (2)	N6—C8—O6	124.6 (4)
C5—O4—C6	114.7 (4)	N6—C8—S3	117.5 (4)
C4—N3—N4	119.6 (4)	O6—C8—S3	117.8 (3)
C4—N3—H3D	120.2	О6—С9—Н9А	109.5
N4—N3—H3D	120.2	O6—C9—H9B	109.5
C5—N4—N3	108.3 (4)	Н9А—С9—Н9В	109.5
O3—C4—N3	127.9 (5)	О6—С9—Н9С	109.5
O3—C4—S2	125.4 (4)	Н9А—С9—Н9С	109.5
N3—C4—S2	106.7 (3)	Н9В—С9—Н9С	109.5
N2-N1-C1-O1	-175.3 (7)	N3—N4—C5—S2	0.5 (7)
N2—N1—C1—S1	1.7 (7)	C6—O4—C5—N4	4.0 (10)
C2—S1—C1—O1	176.1 (6)	C6—O4—C5—S2	-175.8 (5)
C2—S1—C1—N1	-1.0 (5)	C4—S2—C5—N4	-1.8 (5)
C1—N1—N2—C2	-1.5 (8)	C4—S2—C5—O4	178.0 (5)
N1—N2—C2—O2	179.6 (6)	C7—N5—N6—C8	0.2 (9)
N1—N2—C2—S1	0.5 (8)	N6—N5—C7—O5	179.6 (7)
C3—O2—C2—N2	-5.2 (10)	N6—N5—C7—S3	-0.8 (7)
C3—O2—C2—S1	174.0 (5)	C8—S3—C7—O5	-179.5 (7)
C1—S1—C2—N2	0.3 (6)	C8—S3—C7—N5	0.9 (5)
C1—S1—C2—O2	-178.9 (5)	N5—N6—C8—O6	-179.9 (6)
C4—N3—N4—C5	1.7 (8)	N5—N6—C8—S3	0.6 (8)
N4—N3—C4—O3	177.5 (7)	C9—O6—C8—N6	3.4 (11)
N4—N3—C4—S2	-2.9 (7)	C9—O6—C8—S3	-177.1 (6)
C5—S2—C4—O3	-178.0 (6)	C7—S3—C8—N6	-0.9 (6)
C5—S2—C4—N3	2.4 (5)	C7—S3—C8—O6	179.6 (6)
N3—N4—C5—O4	-179.3 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1A···O3 ⁱ	0.86	1.97	2.796 (7)	160.
N3—H3D···O5	0.86	1.96	2.788 (6)	161.
N5—H5A…O1 ⁱⁱ	0.86	1.99	2.813 (8)	161.
Symmetry codes: (i) $x+1, y, z$; (ii) $x-1, y, z$.				

Fig. 1

Fig. 2